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We propose a four-wave mixing experiment to probe the elementary excitation spectrum of a nonequilibrium
Bose-Einstein condensate of exciton-polaritons under nonresonant pumping. Analytical calculations based on
mean-field theory show that this method is able to reveal the characteristic negative energy feature of the
Bogoliubov dispersion. Numerical simulations including the finite spatial profile of the excitation laser spot
and a weak disorder confirm the practical utility of the method for realistic condensates.
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I. INTRODUCTION

A series of remarkable experiments have recently demon-
strated the occurrence of Bose-Einstein condensation in sys-
tems of exciton-polaritons in semiconductor microcavities.1–5

These observations, together with parallel ones on magnon
condensation in magnetic solids,6 are opening the way to the
investigation of the Bose-Einstein condensation phase tran-
sition and of Bose-condensed quantum fluids in completely
new regimes far from thermal equilibrium where the state of
the condensate is no longer determined by a thermal equilib-
rium condition but by a dynamical balance between driving
and dissipation.7

A key quantity in the theory of quantum fluids is the dis-
persion of the elementary excitations, which determines the
dynamics of the system in response to external perturbations
and, in particular, plays a central role in determining its su-
perfluidity properties.8 While detailed knowledge is nowa-
days available of the phonon and roton branches of liquid
helium and of the Bogoliubov modes of dilute atomic gases,9

not much experimental work has been performed yet on po-
lariton condensates. On one hand, pioneering luminescence10

and pump-and-probe experiments11,12 have addressed the ex-
citations of resonantly pumped condensates in an optical
parametric oscillator �OPO� configuration; on the other hand,
luminescence experiments suggesting a linear dispersion of
the elementary excitations in nonresonantly excited polariton
condensates have been recently reported.13 Still, none of
these works has provided complete evidence of the peculiar
features that were predicted to appear because of the non-
equilibrium nature of polariton condensates.14–16

From a different standpoint, while quite some evidence is
available for “off-branch” scattering processes in OPO
configurations,10,11 no observation of the related negative en-
ergy “ghost” branch that is expected to appear under non-
resonant pumping as a consequence of polariton-polariton
interactions has been reported yet. Most likely, this stems
from the fact that experiments were based on luminescence
spectroscopy13 so that the emission from the ghost branch
was easily masked by the much stronger background of the
condensate emission. A few recent theoretical works have
proposed more refined schemes that appear suited to over-
come this difficulty and detect this elusive branch by looking

either at the absorption17 and resonant Rayleigh scattering18

spectra or at the density response to an external pertur-
bation.19

In the present work, we push these ideas forward and we
propose a simple four-wave mixing �FWM� spectroscopy
scheme to measure the dispersion of all elementary excita-
tions branches of a nonresonantly pumped polariton conden-
sate: of the three incident beams needed in a FWM experi-
ment, two are provided by the condensate and one by an
external laser field. The dispersion of excitations is inferred
by scanning the energy and wave vector of this latter beam
and by recording the transmitted, reflected, and/or four-wave
mixed beams. A first application of related FWM techniques
to polariton systems across the parametric oscillation thresh-
old was reported in Ref. 20, but no specific interest was paid
to the excitation modes of the condensate itself.

The mean-field Gross-Pitaevskii formalism to describe the
polariton condensate dynamics that was introduced in Ref.
16 is briefly reviewed in Sec. I and then applied in Sec. II to
describe the FWM response of polariton condensates. Closed
formulas are extracted for the transmission, reflection, and
FWM signals in the spatially homogeneous case and then
used to discuss the main features of the spectra. Generaliza-
tion to the experimentally relevant case of finite-size conden-
sate is investigated in Sec. III: the efficiency of the FWM
method for realistic condensates is confirmed by means of a
numerical solution of the polariton Gross-Pitaevskii equation
�GPE� in nonuniform geometries. Conclusions are finally
drawn in Sec. IV.

II. ELEMENTARY EXCITATION SPECTRUM

As a consequence of the short lifetime of polaritons in
state-of-the-art microcavities, the polariton condensate can
hardly be considered as a thermal equilibrium object: con-
tinuous external pumping is necessary to keep the conden-
sate in a stationary state, and the state of the condensate is
determined by a dynamical balance between pumping and
dissipation. While the momentum distribution of large sys-
tems still appears to follow at large energies the typical ex-
ponential law of equilibrium statistical mechanics,1–3 clear
evidence of the nonequilibrium nature of the polariton con-
densate has been observed in the ballistic outward polariton
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flow from small-sized condensates21,22 as well as in the spon-
taneous appearance of vortices in the presence of a signifi-
cant disorder potential.23

Several theoretical papers have recently investigated the
effect of the nonequilibrium condition on the elementary ex-
citation spectrum14,16 and, in particular, have pointed out the
diffusive nature of the Goldstone mode at low wave vectors.
In what follows, we shall adopt the point of view of our
previous paper16 where the dynamics of a nonequilibrium
condensate was discussed at the mean-field level in terms of
a generalized nonequilibrium Gross-Pitaevskii equation.

This gives the following form for the dispersion of the
elementary excitations on top of a spatially homogeneous
nonequilibrium condensate:

���k� − �c = − i�/2 � ���Bog�k��2 − �2/4, �1�

which is plotted in Fig. 1 as a heavy solid line. In the low-k,
diffusive region of the spectrum the � signs correspond to,
respectively, the phase and the density branches. In the
high-k region where the standard equilibrium Bogoliubov
dispersion is recovered, they instead correspond to the nor-
mal and anomalous ghost branches. In what follows, specific
attention will be paid to the ghost branch which is a signature
of coherent polariton-polariton interactions.9

The condensate energy �c �central dot� is blue shifted
with respect to the bottom of the lower polariton branch
�dotted line� by the condensate-condensate and condensate-
reservoir interactions, �c=�0+gnc+gRnR. Here, nc and nR
are the densities, respectively, of the condensate and of the
exciton reservoir, while the g and gR coupling constants char-
acterize the interactions, respectively, between a pair of con-
densate polaritons and between the condensate polaritons
and reservoir excitons. The Bogoliubov spectrum of equilib-
rium condensates has the standard form �Bog�k�= ��k��k
+2gnc��1/2 in terms of the bare polariton dispersion at linear
regime. Within the parabolic approximation, this can be writ-
ten as �k=�k2 /2mLP. As discussed in Ref. 16, the effective
width � is defined as �=��	 / �1+���, in terms of the
scaled pump intensity �= P / Pth−1 above the threshold value
Pth and the � coefficient defined in terms of gain rate R�nR�
of the condensate from the excitonic reservoir as �
=nR

0R��nR
0� /R�nR

0�. Well above the threshold �
1, the effec-
tive width � recovers the empty-cavity polariton decay rate
	.

Note how the dispersion of elementary excitations signifi-
cantly differs from the naive Hartree prediction �=�0
+2gRnR+gnc+�k2 /2m �dashed line� and rather recovers in
the high-momentum region the value �=�0+2gRnR+2gnc
+�k2 /2m which correctly includes a factor of 2 due to
bosonic exchange �solid line�. Provided that the effect of
saturation24 on the polariton interactions is negligible, these
simple arguments can be used to isolate the contribution of,
respectively, the condensate-reservoir and the condensate-
condensate interactions to the blue shift and possibly even
evaluate the fraction of condensed excitons with respect to
the total number of excitons in the microcavity.

III. FOUR-WAVE MIXING SPECTROSCOPY SCHEME

Even though a simple luminescence experiment should in
principle be able to reveal both the positive and the negative
ghost branches of the elementary excitation spectrum shown
in Fig. 1, experimental observations have not been able to
provide unambiguous evidence of the ghost branch yet.1,3,13

Most likely the very weak luminescence coming from the
ghost branch is hidden by the much stronger emission from
the condensate and the upper branch.

The physical process underlying our proposal is sketched
in Fig. 1. Elementary excitations are created on top of the
condensate by injecting extra polaritons with a probe laser
beam at a finite in-plane wave vector k tuned at a frequency
�. The response of the system is then observed via the co-
herent light emission at an opposite wave vector k at an
energy 2�c−�: the existence of a coherent coupling between
the symmetrically located frequencies � and 2�c−� and
wave vectors �k stems from the fact that the elementary
excitations of the condensate consist of a coherent superpo-
sition of plane waves at �k ,�� and �−k ,2�c−��.9,25 Equiva-
lently, this same process can be interpreted in nonlinear op-
tical terms as a stimulated parametric scattering where a pair
of condensate polaritons is coherently scattered into one
more probe polariton plus one FWM polariton of symmetric
wave vector and frequency. Within the standard language of
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FIG. 1. �Color online� Plot of the elementary excitation spec-
trum in a spatially homogeneous geometry and sketch of the pro-
posed FWM experiment. The central dot indicates the wave vector
k=0 and the energy �c of the condensate. The heavy solid line is
the dispersion �Eq. �1�� of the elementary excitations on top of the
condensate. The arrows show the parametric scattering process on
which our proposed scheme is based: the condensate is probed at
the lower dot, and the response is probed via the emission at the
upper dot. The dotted line is the dispersion of free polaritons at
linear regime. The solid and dashed lines include the blue shift due
to condensate-condensate and condensate-reservoir interactions as
mentioned in the text. System parameters: 	=�=gnc and gRnR

=0.5gnc.
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four-wave mixing, two of the three input beams are provided
by the condensate itself and only the third comes from the
incident laser.

A. Transmittivity

The same linearization procedure that was used in Ref. 16
to obtain the dispersion of the elementary excitations can be
straightforwardly used to determine the response of the sys-
tem to a �weak� probe laser of amplitude Epr�k ,��. The sim-
plest quantity to consider is the probe transmission.

In the usual approximation that the effective reservoir re-
laxation rate 	R is much larger than all other frequency scales
in the problem, the reservoir dynamics can be eliminated and
the amplitude of the transmitted field has the following form:

Etr�k,�� =
�T0	

2

gnc + �k + � + i�/2
�� − �+�k���� − �−�k��

Epr�k,�� . �2�

The frequencies ���k� that appear in the resonant denomi-
nators were defined in Eq. �1�: the transmission is resonantly
enhanced when the probe is on resonance with an elementary
excitation of the polariton condensate, either on the positive
energy branch or on the negative energy ghost branch. A
complete density plot of the transmittivity T= �Etr /Epr�2 in the
�� ,k� plane is shown in Fig. 2�a�. For the sake of simplicity,
the transmission T is normalized to the linear regime reso-
nant transmittivity T0 of the unloaded cavity.

At large momenta k, the intensity of the ghost mode is
much weaker than the one of the upper, normal mode and
quickly tends to zero. Already for k�=1, the ghost resonance
is extremely weak and almost invisible in the cut shown as a
dotted line in Fig. 2�c�. On the other hand, the normal reso-
nance tends to the unloaded cavity peak of height T /T0=1
and width 	. For decreasing values of k, the intensities of the
two resonances get closer and eventually stick at the singular
point k�=0.5 of the dispersion �Fig. 2�e��.

In the low-k diffusive region where the two branches are
degenerate Re����=0, the transmission intensity signifi-
cantly exceeds the peak transmittivity T0 of the unloaded
cavity �solid line in Fig. 2�c��: this gain feature is due to the
condensate that is able to amplify the probe beam. A similar
phenomenology was found and discussed in Ref. 15 for the
case of an optical parametric oscillator.

While the appearance of the ghost branch in the transmis-
sion spectra of Fig. 2 is a signature of the presence of the
condensate, the transmittivity on the normal branch can ex-
ceed the linear regime value T0 even for pump intensities
well below the condensation threshold. Even if not sufficient
to overcome losses, some gain is in fact present also in this
case,17 as witnessed by the polariton linewidth decreasing
below the unloaded cavity value 	.

B. FWM signal

The same method can be used to obtain an expression for
the amplitude of the four-wave mixing signal

EFWM�k,�� = −
�T0	

2

gnc + i�/2
�� − �+�k���� − �−�k��

� Epr
� �− k,2�c − �� . �3�

The response function SFWM= �EFWM /Epr�2 is plotted in the
upper-left panel of Fig. 2. Thanks to the symmetry under the
exchange �→−�, the heights of the two peaks correspond-
ing to the normal and the ghost branches are equal.

This is a crucial advantage of the FWM technique as com-
pared to the transmission spectroscopy discussed in Sec.
III A or the resonant Rayleigh scattering discussed in Ref.
18. Different from this latter scheme, FWM does not rely on
the presence of a disorder potential and therefore is not af-
fected by specklelike modulations of the detected signal. As
it happened for the probe transmission, also the FWM signal
results as strongly enhanced in the diffusive region and may
eventually become stronger than the probe itself. On the
other hand, it decreases quite quickly for larger values of k.

Note that both direct polariton-polariton collisions and
nonlinear gain saturation effects contribute to the FWM sig-
nal via, respectively, the terms gnc and i� /2 in the numerator
of Eq. �3�: some FWM signal is therefore expected to appear
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FIG. 2. �a� Transmittivity and �b� FWM spectra of a nonequi-
librium condensate excited with a probe laser at wave vector k
0
and frequency �. The full and dashed lines indicate the positive and
negative Bogoliubov branches from Eq. �1�. Cuts of the transmis-
sion and FWM spectra at given k values are shown in panels �c� and
�d�; the corresponding k values are indicated by the vertical lines in
panels �a� and �b�. The peak value of the transmittivity and the
FWM signal on, respectively, the normal and ghost Bogoliubov
branches are shown in �e� and �f� as solid and dashed lines. In �f�
the two quantities coincide. All spectra are normalized to the
empty-cavity, linear regime transmittivity T0. System parameters:
�=	=gnc.
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even for negligible polariton-polariton collisions but is in
this case peaked very close to the free polariton dispersion.
On the other hand, the presence of a FWM signal appears to
be conclusive evidence of the presence of a coherent conden-
sate: the same calculation below threshold would in fact give
a vanishing coherent FWM amplitude in the weak probe
limit. Gain saturation is in fact not active in this regime and
FWM processes involving the exciton reservoir only provide
an incoherent background without any specific resonant fea-
ture.

C. Reflectivity

As many microcavity samples are grown on an absorbing
substrate, transmission measurements are not always pos-
sible. While FWM expression �3� is the same in both reflec-
tion and transmission geometries, the interference between
direct reflections of light on the external mirror and the sec-
ondary emission from the cavity makes the following expres-
sion of the reflection amplitude a bit more complicate than
transmission amplitude �2�:

Er�k,�� = �1 − i
	ph

2

gnc + �k + � + i�/2
�� − �+�k���� − �−�k���Epr�k,�� .

�4�

Note that the linewidth 	ph that appears in the numerator of
Eq. �4� is the linewidth of the cavity-photon mode in the
absence of any excitonic resonance. This quantity is to be
distinguished from the linewidth 	 of the polariton branch
that appeared in the previous formulas. In terms of the
Hopfield coefficients Uph,x

LP that quantify the cavity-photonic
and the excitonic contents of the lower polariton branch, the
polariton 	, exciton, and cavity-photon 	x,ph linewidths are
related by24

	 = 	x�Ux
LP�2 + 	ph�Uc

LP�2. �5�

As it involves subtle interference effects, the reflection
spectrum turns out to be sensitive to the ratio of the linewidth
of excitations in the empty and pumped cavity 	 /��1, as
well as to the ratio between the cavity-photon and the polar-
iton linewidths 	ph /	. Here we focus our attention on the
experimentally most relevant case where 	ph=	x=	. Ex-
amples of spectra are shown in Fig. 3 for different values of
the pumping intensity. Panels �a� and �c� refer to a case well
above threshold for which � /		1, while panels �b� and �d�
are made for a lower �but still above threshold� value of the
pump intensity at which � /	=0.4.

In panel �a�, a minimum in the reflectivity is visible on
resonance with the positive Bogoliubov branch, while the
reflected intensity on resonance with the negative branch ex-
ceeds the incident intensity. As for the transmission and the
FWM signal, the amplification effect is the strongest in the
diffusive region at low k �panel �c��. At high values of k, the
dip corresponding to the normal branch remains fully visible,
while the peak corresponding to the ghost branch disappears.
This once again confirms that the FWM mixing scheme is
the most suited tool for the detection of the ghost branch.

The same quantities are plotted in panels �b�, �d�, and �f�
for a smaller value of � /	=0.4, i.e., for a pump intensity

closer to the threshold. As a consequence of the narrower
resonance line, the reflected beam is now more intense than
the incident one on both the normal and the ghost branches.
The amplification in the low-k diffusive region is also stron-
ger than in the case P
 Pth considered before.

IV. PROBING THE ELEMENTARY EXCITATION
SPECTRUM IN FINITE-SIZE AND/OR

DISORDERED CONDENSATES

Even in the absence of trapping potentials, the spatial ex-
tension of polariton condensates is generally limited by the
size of the laser spot that is used to pump the microcavity.22

Typically, state-of-the-art polariton condensates have a typi-
cal size on the order of tens of microns and may show a
considerable inhomogeneous broadening of their spectral
features as a consequence of the inhomogeneous density pro-
file. Although this effect can be reduced by choosing top-hat
pump beams, the interpretation of FWM experiments is the
clearest if one focuses the probe spot onto a small region at
the center of the condensate where the density is almost flat
and one spatially selects the emission from the same central
region.

The result of numerical calculations based on the full po-
lariton Gross-Pitaevskii equation16 is summarized in Fig. 4.
The case of a probe beam of diameter 1 �m much smaller
than the full condensate size and tuned at a frequency
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FIG. 3. Panels �a� and �b�: �k ,�� plot of the reflectivity for �a�
	=�=gnc and �b� �=0.4	=gnc. �c� and �d� show reflection spectra
at fixed values of k as indicated by the vertical lines in panels �a�
and �b�. The peak values of the reflectivity on the normal and ghost
Bogoliubov branches are, respectively, shown in �e� and �f� as solid
and dashed lines. Parameters: 	=	ph=	x.
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slightly below the condensate frequency �c is considered.
The case of a quite high probe wave vector kp

=1.5 �m−1 tuned close to resonance with the ghost branch is
shown in the right panel of Fig. 4. As the k distribution is
narrow as compared to the central wave vector kp, the re-
sponse closely resembles the one of the spatially homoge-
neous case discussed in Sec. III. A single FWM response
peak appears around kp and with a k-space linewidth nar-
rower than the one of the incident probe: only those wave
vector components that are on resonance with the ghost
branch effectively contribute to the FWM signal.

A remarkable feature of the ghost branch is visible in the
real-space density profile of the probed condensate shown in
the central panel of Fig. 4: as the group velocity of the ghost
branch is opposite to the wave vector k, the perturbation due
to the probe laser �with a central wave vector kp
0 pointing
to the right� propagates through the condensate in the left-
wards direction and concentrates on the left-hand side of the
probe spot.

The case of a probe laser with a smaller wave vector and
a frequency closer to but still below the condensate fre-
quency is shown in the left panel. This choice dramatically
modifies the qualitative shape of the response. In particular,
note how the maximum of the response at the probe fre-
quency lies between the two excitation branches of the ho-
mogeneous system, a spectral region where collective modes
are strongly affected by the finite size of the system and
possibly by the nontrivial spectral shape of the conden-
sate.22,26 Although information on the excitation modes of

the condensate is hardly obtained in this configuration, the
very presence of a FWM signal is still a direct proof of the
presence of a coherent condensate.

The situation is a bit more complex in the presence of
disorder. As any experimental sample is inevitably far from
being perfectly homogeneous, it is important to briefly sum-
marize the main features that we observe in our numerical
simulations when a disorder potential acting on polaritons is
included. A complete study is postponed to further work.

The case of a weak disorder is illustrated in Fig. 5: the
strength of the disorder potential is chosen to be strong
enough to substantially modulate the polariton density �see
inset� but weak enough not to split the condensate into sev-
eral frequency components.27 In this case, the FWM signal
remains clearly visible: the wave vector distribution is
strongly broadened by the disorder, but the main features that
were observed in the right panel of Fig. 4 are still apparent.

The situation is dramatically different whenever multiple
condensates are present with a substantial spatial overlap. In
this case, the main effect of the probe beam is to redistribute
the intensity among the different condensate frequencies and
no clear FWM signal is easily identified among the many
spectral lines forming the emission spectrum.

V. CONCLUSIONS

We have proposed and analyzed a four-wave mixing spec-
troscopy scheme to probe the excitation spectrum of a non-
equilibrium polariton condensate. Clear evidence of the
negative frequency ghost branch is predicted to appear in the
FWM spectra. The presence of this feature depends crucially
on the coherent nature of the condensate and can therefore be
used as an additional probe of the condensate coherence.
Mapping out the FWM resonance as a function of frequency

FIG. 4. �Color online� Numerical results for the �k ,�� emission
pattern from a probed polariton condensate in a transmission geom-
etry. The condensate frequency is �c=0.83 meV and probe laser
has a 1 �m diameter. The central wave vector and the frequency of
the probe are kp=0.6 �m−1 and �p=0.3 meV �left panel� and kp

=1.5 �m−1 and �p=−0.2 meV �right panel�. The full and dashed
lines show the analytical prediction, the excitation spectrum, and
the linear regime polariton dispersion. The central surface plot
shows the real-space polariton density profile corresponding to the
right-hand panel. In all panels, the condensate is excited with a
top-hat laser with a 30 �m diameter and only the emission origi-
nating from a central region with a 20 �m diameter is recorded in
the left and right panels. The finite frequency spread of the emission
lines originates from the finite time window of about 12 ps from
which the spectrum was extracted.

FIG. 5. �Color online� Emission pattern for the same configura-
tion as in the right-hand panel of Fig. 4 but in the presence of a
disorder potential acting on the polaritons. The height of the disor-
der potential is in the 1 meV range. Inset: density profile of the
disordered condensate.
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and wave vector gives precise access to the elementary ex-
citation spectrum. We have numerically demonstrated that a
spatially localized probe can be used to overcome inhomo-
geneous broadening effects by restricting the measurement to
the central region of the condensate where the density is
almost flat.
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